CITY UNIVERSITY OF HONG KONG 香港城市大學

Multi-model Statistical-Dynamical Seasonal Forecast of Landfalling Tropical Cyclones in the United States

登陸美國熱帶氣旋的 多模式統計動力季節預報

Submitted to Department of Physics and Materials Science 物理及材料科學系 in Partial Fulfillment of the Requirements for the Degree of Master of Philosophy 哲學碩士學位

by

Chiu Kwok Shing 趙國誠

July 2009 二零零九年七月

Abstract

In past studies, seasonal prediction of tropical cyclones (TCs) has been made by statistically relating historical observations and the TC activities. In statistical relationship between past data and future condition, it is implicitly assumed the future would behave in the same way as in the past, which is not necessarily correct. To solve such an inherent problem, the statistical-dynamical technique is used in this study. Instead of relating the TC activities with historical data such as El Niño-Southern Oscillation (ENSO), stratospheric Quasi-Biennial Oscillation (QBO), North Atlantic Oscillation (NAO) and other atmospheric indices, the predictors are derived from dynamical-model-predicted fields. Dynamical and thermodynamical fields related to the formation and movement of TCs, such as sea-surface temperature, environmental steering flow patterns and geopotential fields are chosen as predictors.

In this study, forecasts of seven coupled global atmospheric general circulation models (GCMs) from the DEMETER (Development of a European multimodel ensemble system for seasonal to interannual prediction) project are related to the number of landfalling TCs over a particular coastal region of the United States of America. As a result, seven individual prediction equations are formulated from predictors of one of the seven models. A multi-model prediction equations.

To analyze the relationships between the number of landfalling TCs and model-predicted fields, the model-predicted fields are represented by the empirical orthogonal functions (EOFs) as potential predictors. To predict the number of future landfalling TCs, an equation relating the each of the predictors and the TC number is needed. The Poisson regression is used for the purpose, as the normality assumption failed in small number of landfalling TCs. Replacing the simple linear prediction equation, a non-linear prediction equation is used with the Poisson regression. Multivariate stepwise procedures are used to select the "best" sets of predictors in the forecast equation. With the U.S. Atlantic coast divided into three regions (East Coast, Florida and Gulf Coast) according to the geophysical location, the predictions for the regional number of landfalling TCs are skillful. The prediction for the Florida region gives about 17% skills over the climatology, which is defined as the ratio between the root-mean-square errors of the prediction scheme and that of the climatological mean, while the predictions for the East Coast and Gulf Coast regions give skills of about 30% and 40%, respectively. It is therefore shown that the statistical-dynamical technique is feasible in seasonal forecast of TC activities. It is hoped that a more accurate seasonal forecast will be made using the technique in the near future.

Table of Contents

Abstract		i
Acknowled	lgment	iii
Table of C	ontents	iv
List of Tab	les	vii
List of Fig	ures	Х
List of Abl	previations	XV
List of Syr	ibols	xvi
Chapter 1	Introduction	1
1.1 Obj	ectives	2
1.2 Ove	rview of chapters	3
Chapter 2	Literature review	4
2.1 Ove	rview of tropical cyclones (TCs)	4
2.1.1	Mature structure	4
2.1.2	Genesis	6
2.1.3	Movement	7
2.1.4	Summary	10
2.2 Var	ability of TC activities and seasonal forecast of TCs	11
2.2.1	Interannual to multi-decadal variation of TC activities	11
2.2.2	Statistical seasonal forecast of TC activities	13
2.2.3	Statistical-dynamical forecast	15
2.2.4	Summary	15
<u>Chapter 3</u>	Data	17

3.1 Landfalling tropical cyclone dataset

17

3.2	Clim	atological characteristics of U.S. landfalling TCs	18
3.3	Glob	al atmospheric general circulation model forecast	22
3.4	Sum	nary	24
<u>Cha</u>	apter 4]	Methodology	26
4.1	Anal	ysis of potential predictors	26
	4.1.1	North et al. rule of thumb	27
	4.1.2	Summary	28
4.2	Deriv	vation of a forecast equation	29
	4.2.1	Poisson regression	29
	4.2.2	Screening potential predictors	31
	4.2.3	Stepwise selection of potential predictors	32
	4.2.4	Multi-model prediction	33
4.3	Cross	s-validation	33
<u>Cha</u>	apter 5	Factors affecting landfalling TCs	36
<u>Cha</u> 5.1	apter 5] An e	Factors affecting landfalling TCs	36 36
<u>Cha</u> 5.1 5.2	Apter 5 l An e Phys	Factors affecting landfalling TCs xample of single-predictor prediction ics behind the significant predictors	36 36 39
<u>Cha</u> 5.1 5.2	An e An e Phys 5.2.1	Factors affecting landfalling TCs xample of single-predictor prediction ics behind the significant predictors Predictors from model-CERFACS for EC region	36 36 39 40
<u>Cha</u> 5.1 5.2	An e An e Phys 5.2.1 5.2.2	Factors affecting landfalling TCs xample of single-predictor prediction ics behind the significant predictors Predictors from model-CERFACS for EC region Predictors from model-LODYC for GC region	36 36 39 40 49
<u>Cha</u> 5.1 5.2	An e: Phys 5.2.1 5.2.2 5.2.3	Factors affecting landfalling TCs xample of single-predictor prediction ics behind the significant predictors Predictors from model-CERFACS for EC region Predictors from model-LODYC for GC region Predictors from model-LODYC for both GC and FL region	36 36 39 40 49 57
<u>Cha</u> 5.1 5.2	An e Phys 5.2.1 5.2.2 5.2.3 5.2.4	Factors affecting landfalling TCs xample of single-predictor prediction ics behind the significant predictors Predictors from model-CERFACS for EC region Predictors from model-LODYC for GC region Predictors from model-LODYC for both GC and FL region Predictors from model-LODYC for FL region	36 36 39 40 49 57 63
<u>Cha</u> 5.1 5.2	An er Phys 5.2.1 5.2.2 5.2.3 5.2.4 Summ	Factors affecting landfalling TCs xample of single-predictor prediction ics behind the significant predictors Predictors from model-CERFACS for EC region Predictors from model-LODYC for GC region Predictors from model-LODYC for both GC and FL region Predictors from model-LODYC for FL region	36 39 40 49 57 63 67
<u>Cha</u> 5.1 5.2 5.3 <u>Cha</u>	An e: Phys 5.2.1 5.2.2 5.2.3 5.2.4 Summ	Factors affecting landfalling TCs xample of single-predictor prediction ics behind the significant predictors Predictors from model-CERFACS for EC region Predictors from model-LODYC for GC region Predictors from model-LODYC for both GC and FL region Predictors from model-LODYC for FL region mary Prediction equations and performance	36 39 40 49 57 63 67 69
<u>Cha</u> 5.1 5.2 5.3 <u>Cha</u> 6.1	An e: Phys 5.2.1 5.2.2 5.2.3 5.2.4 Sumi Apter 6 I Singl	Factors affecting landfalling TCs xample of single-predictor prediction ics behind the significant predictors Predictors from model-CERFACS for EC region Predictors from model-LODYC for GC region Predictors from model-LODYC for both GC and FL region Predictors from model-LODYC for FL region nary Prediction equations and performance e-model prediction	36 39 40 49 57 63 67 69 69
<u>Cha</u> 5.1 5.2 5.3 <u>Cha</u> 6.1	An e: Phys 5.2.1 5.2.2 5.2.3 5.2.4 Sum Apter 6 I Singl 6.1.1	Factors affecting landfalling TCs xample of single-predictor prediction ics behind the significant predictors Predictors from model-CERFACS for EC region Predictors from model-LODYC for GC region Predictors from model-LODYC for both GC and FL region Predictors from model-LODYC for FL region mary Prediction equations and performance e-model prediction Prediction for East Coast region	36 36 39 40 49 57 63 67 69 69

	6.1.3	Prediction for Florida region	73
6.2	Mult	ti-model prediction	75
6.3	Sum	mary	79
Chapter 7 Summary		81	
7.1	Disc	ussion and summary	81
7.2	Limi	itations and suggestions on future work	83
References			

List of Tables

- Table 3.1. List of TCs with intensity of tropical storm or above during 1980-2001 August-September. Reg. represents the region where the TC makes landfall. A TC may make landfall over more than one region. TS and HR represent the highest intensity of a TC is tropical storm and hurricane (maximum 1-minute sustained surface wind speed is higher than 118 km h⁻¹), respectively.
- Table 3.2. The resolutions and initialization strategies of the DEMETER coupled models. (Adopted from Palmer et al. 2004).
- Table 5.1. Residual deviance of the significant single-predictor Poisson regression, with predictand of EC landfalling TCs and predictors from the model-CERFACS derived EOF time series. The null deviance is 18.20. Insignificant predictors are indicated by a hyphen.
- Table 5.2. Explained variances (var), eigenvalues, single-predictor
 Poisson regression coefficient (coef) and residual deviance
 (D_{res}) of the significant predictors as in Table 5.1. Separation
 denotes whether the significant EOFs from the same
 atmospheric field are well-separated as defined by North et al.
 (1982) rule of thumb. U, V, Z, SST and SLP represent zonal

20

23

wind, meridional wind, geopotential, sea-surface temperature	
and sea-level pressure, respectively.	

- Table 5.3. As in Table 5.2, except for Gulf Coast region and the null residual deviance is 29.60.
- Table 5.4. Explained variances (var), eigenvalues, single-predictor
 Poisson regression coefficient (coef) and residual deviance
 (Dres) of the significant predictors as in Table 5.3. Separation
 denotes whether the significant EOFs from the same
 atmospheric field are well-separated as defined by North et al.
 (1982) rule of thumb. U, V, Z, SST and SLP represent zonal
 wind, meridional wind, geopotential, sea-surface temperature
 and sea-level pressure, respectively. Bolded are significant
- Table 5.5. As in Table 5.2, except for Florida region and the null residual deviance is 24.77.
- Table 5.6. Explained variances (var), eigenvalues, single-predictor
 Poisson regression coefficient (coef) and residual deviance
 (Dres) of the significant predictors as in Table 5.5. Separation
 denotes whether the significant EOFs from the same
 atmospheric field are well-separated as defined by North et al.
 (1982) rule of thumb. U, V, Z, SST and SLP represent zonal
 wind, meridional wind, geopotential, sea-surface temperature

50

51

57

and sea-level pressure, respectively. Bolded are significant	
predictors shared with the GC region.	58
Table 6.1. Agreement coefficients of the regional prediction equations	
derived from the significant predictors.	76

List of Figures

Fig.	2.1	. Schematic of the structure of a mature TC (adopted from	
		Aguado and Burt 1999).	5
Fig.	2.2	. Vertical cross-section illustration of the types of vertical	
		wind shear and cloudiness associated with Atlantic tropical	
		cyclones that extend through the tropopause (TROP) into the	
		stratosphere. Right are the typical west QBO period, left are	
		typical east phase of QBO. (Adopted from Gray et al. 1992).	12
Fig.	3.1.	Map of the United States, with the geophysical separation of	
		the 3 regions: East Coast, Florida and Gulf Coast.	18
Fig.	3.2	. Monthly number of U.S. landfalling TCs in the 3 regions	
		during the period 1980 - 2001.	19
Fig.	3.3.	Best tracks of landfalling TCs over (a) EC, (b) FL and (c) GC	
		region in August and September during the period 1980 -	
		2001.	21
Fig.	5.1.	Time series plot of EOF coefficients of the model CERFACS	
		predicted 200-hPa zonal wind EOF 1, observed and single-	
		predictor regression equation predicted number of landfalling	
		TCs.	38
Fig.	5.2	. Scatterplot of model-CERFACS predicted 200-hPa zonal	

wind EOF 1 prediction equation predicted against observed number of EC landfalling TCs. The solid and dashed lines

represent perfect prediction and the linear relationship between the observed and predicted values, respectively.	39
Fig. 5.3. Spatial pattern of positive phase of the model CERFACS	
predicted 200hPa zonal wind EOF 1. Shaded are the	
negative-valued regions. This explained variance of the EOF	
is 53.91% as indicated at the top-right hand corner. The	
eigenvalue corresponds to the EOF is indicated at the top of	
the figure.	42
Fig. 5.4. Divergence due to the positive phase of the model-	
CERFACS predicted 200-hPa zonal wind EOF 1. Shaded are	
the negative-valued regions.	42
Fig. 5.5. As in Fig. 5.3, except for 200-hPa zonal wind EOF 3.	44
Fig. 5.6. As in Fig. 5.4, except for 200-hPa zonal wind EOF 3.	44
Fig. 5.7. As in Fig. 5.3, except for 200-hPa geopotential EOF 1.	46
Fig. 5.8. As in Fig. 5.3, except for 500-hPa geopotential EOF 4.	46
Fig. 5.9. As in Fig. 5.3, except for 500-hPa zonal wind EOF 1.	47
Fig. 5.10. As in Fig. 5.3, except for 500-hPa geopotential EOF 1.	47
Fig. 5.11. As in Fig. 5.3, except for 850-hPa meridional wind EOF 1.	48
Fig. 5.12. As in Fig. 5.3, except for sea-surface temperature EOF 1.	48
Fig. 5.13. As in Fig. 5.3, except for sea-level-pressure EOF 1.	49
Fig. 5.14. Spatial pattern of positive phase of the model LODYC	

predicted 500hPa meridional wind EOF 2. Shaded are the

negative-valued regions. This explained variance of the EOF	
is 14.51% as indicated at the top-right hand corner. The	
eigenvalue corresponds to the EOF is indicated at the top of	
the figure.	52
Fig. 5.15. As in Fig. 5.14, except for 850-hPa meridional wind EOF 1.	53
Fig. 5.16. As in Fig. 5.14, except for 500-hPa geopotential EOF 4.	54
Fig. 5.17. As in Fig. 5.14, except for 850-hPa geopotential EOF 4.	54
Fig. 5.18. As in Fig. 5.14, except for 850-hPa meridional wind EOF 3.	55
Fig. 5.19. Divergence due to the model-LODYC predicted 850-hPa	
meridional wind EOF 3. Shaded are the negative-valued	
regions.	55
Fig. 5.20. Relative vorticity due to the model-LODYC predicted 850-	
hPa meridional wind EOF 3. Shaded are the negative-valued	
regions.	56
Fig. 5.21. As in Fig. 5.14, except for 200-hPa geopotential EOF 2.	59
Fig. 5.22. As in Fig. 5.14, except for 850-hPa geotpotential EOF 2.	59
Fig. 5.23. As in Fig. 5.14, except for 200-hPa zonal wind EOF 1.	60
Fig. 5.24. As in Fig. 5.14, except for 500-hPa zonal wind EOF 2.	61
Fig. 5.25 As in Fig. 5.14, except for 850-hPa zonal wind EOF 1.	61
Fig. 5.26. As in Fig. 5.14, except for 200-hPa meridional wind EOF 2.	62
Fig. 5.27. As in Fig. 5.14, except for sea-surface temperature EOF 1.	63

Fig. 5.28. As in Fig. 5.14, except for sea-level pressure EOF 2.	63
Fig. 5.29. As in Fig. 5.14, except for 200-hPa meridional EOF 4.	64
Fig. 5.30. As in Fig. 5.14, except for 500-hPa meridional EOF 3.	65
Fig. 5.31. As in Fig. 5.14, except for 850-hPa zonal wind EOF 2.	65
Fig. 5.32. As in Fig. 5.14, except for 850-hPa geopotential EOF 3.	66
Fig. 5.33. As in Fig. 5.14, except for sea-surface temperature EOF 3.	67
Fig. 6.1. Scatterplot of model-CERFACS prediction equation	
predicted and cross-validation predicted against observed	
number of EC landfalling TCs. Solid line represents the	
perfect prediction, dashed line represents the linear	
relationship between the cross-validation predicted and the	
observation.	70
Fig. 6.2. As in Fig. 6.1, except for model LODYC and Gulf Coast	
region.	73
Fig. 6.3. As in Fig. 6.1, except for model LODYC and Florida region.	74
Fig. 6.4. Scatterplot of simple-average and agreement-coefficient-	
weighted average multi-model prediction for EC landfalling	
TCs. The solid line represents the perfect prediction and the	
dashed line represents the linear relationship between the	
weighted-average prediction and the observation.	77
Fig. 6.5. As in Fig. 6.4, except for Gulf Coast region.	78
Fig. 6.6. As in Fig. 6.4, except for Florida region.	79