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Abstract 

 In past studies, seasonal prediction of tropical cyclones (TCs) has been 

made by statistically relating historical observations and the TC activities. In 

statistical relationship between past data and future condition, it is implicitly 

assumed the future would behave in the same way as in the past, which is not 

necessarily correct. To solve such an inherent problem, the statistical-dynamical 

technique is used in this study. Instead of relating the TC activities with historical 

data such as El Niño-Southern Oscillation (ENSO), stratospheric Quasi-Biennial 

Oscillation (QBO), North Atlantic Oscillation (NAO) and other atmospheric 

indices, the predictors are derived from dynamical-model-predicted fields. 

Dynamical and thermodynamical fields related to the formation and movement of 

TCs, such as sea-surface temperature, environmental steering flow patterns and 

geopotential fields are chosen as predictors. 

 In this study, forecasts of seven coupled global atmospheric general 

circulation models (GCMs) from the DEMETER (Development of a European 

multimodel ensemble system for seasonal to interannual prediction) project are 

related to the number of landfalling TCs over a particular coastal region of the 

United States of America. As a result, seven individual prediction equations are 

formulated from predictors of one of the seven models. A multi-model prediction 

equation is then formulated as a linear combination of the individual equations. 

 To analyze the relationships between the number of landfalling TCs and 

model-predicted fields, the model-predicted fields are represented by the 

empirical orthogonal functions (EOFs) as potential predictors. To predict the 
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number of future landfalling TCs, an equation relating the each of the predictors 

and the TC number is needed. The Poisson regression is used for the purpose, as 

the normality assumption failed in small number of landfalling TCs. Replacing the 

simple linear prediction equation, a non-linear prediction equation is used with the 

Poisson regression. Multivariate stepwise procedures are used to select the “best” 

sets of predictors in the forecast equation. With the U.S. Atlantic coast divided 

into three regions (East Coast, Florida and Gulf Coast) according to the 

geophysical location, the predictions for the regional number of landfalling TCs 

are skillful. The prediction for the Florida region gives about 17% skills over the 

climatology, which is defined as the ratio between the root-mean-square errors of 

the prediction scheme and that of the climatological mean, while the predictions 

for the East Coast and Gulf Coast regions give skills of about 30% and 40%, 

respectively. It is therefore shown that the statistical-dynamical technique is 

feasible in seasonal forecast of TC activities. It is hoped that a more accurate 

seasonal forecast will be made using the technique in the near future. 
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